Clustering with Local Restrictions

نویسندگان

  • Daniel Lokshtanov
  • Dániel Marx
چکیده

We study a family of graph clustering problems where each cluster has to satisfy a certain local requirement. Formally, let μ be a function on the subsets of vertices of a graph G. In the (μ, p, q)-Partition problem, the task is to find a partition of the vertices into clusters where each cluster C satisfies the requirements that (1) at most q edges leave C and (2) μ(C) ≤ p. Our first result shows that if μ is an arbitrary polynomial-time computable monotone function, then (μ, p, q)-Partition can be solved in time n, i.e., it is polynomialtime solvable for every fixed q. We study in detail three concrete functions μ (the number of vertices in the cluster, number of nonedges in the cluster, maximum number of non-neighbors a vertex has in the cluster), which correspond to natural clustering problems. For these functions, we show that (μ, p, q)-Partition can be solved in time 2 ·n and in time 2 ·n on n-vertex graphs, i.e., the problem is fixed-parameter tractable parameterized by p or by q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

Fuzzy Clustering Image Segmentation Based on Particle Swarm Optimization

Image segmentation refers to the technology to segment the image into different regions with different characteristics and to extract useful objectives, and it is a key step from image processing to image analysis. Based on the comprehensive study of image segmentation technology, this paper analyzes the advantages and disadvantages of the existing fuzzy clustering algorithms; integrates the pa...

متن کامل

A novel local search method for microaggregation

In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...

متن کامل

Automated Panoramas from Multiple Photos of Multiple Subjects

In this project, we consider the problem of automatic construction of panoramas of multiple subjects. Previous approaches have used human input or restrictions on the image sequence for the matching step. Recent advanced approaches use object recognition techniques based on invariant local features to match images. These approaches provide a great improvement towards automatization of the task....

متن کامل

Generating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms

UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...

متن کامل

Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Comput.

دوره 222  شماره 

صفحات  -

تاریخ انتشار 2011